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The Rodinia Benchmarks in SYCL 

 

 
 Abstract—The Rodinia Benchmark Suite in SYCL was first 

published as a technical report at Argonne National 

Laboratory in June 2020. While porting more programs to 

SYCL, the Rodinia benchmark suites were merged into the 

heterogenous computing benchmarks (HeCBench). Since then, 

the source codes and scripts of the benchmark suite have been 

updated to fix compile- and run-time issues that users 

encountered. With the recent SYCL compilers from Codeplay 

and Intel, this report presents the experimental results of 

evaluating these benchmarks on the Intel CPU and GPU 

devices.  

I. INTRODUCTION 

 
As opposed to the Open Computing Language (OpenCL) 

programming model in which host and device codes are 
generally written in two programming languages [1], SYCL 
can combine host and device codes for an application in a 
type-safe way to improve development productivity and 
performance portability [2].  

Rodinia is a widely used benchmark suite for 
heterogeneous computing [3,4,5,6,7,8,9,10,11,12]. Hence, 
the OpenCL implementations of the benchmark suite were 
ported to SYCL manually. The SYCL benchmark suite is an 
open-source project1 for tracking the development of the 
mainstream SYCL compilers [13,14,15], and for developers 
and researchers interested in programming productivity, 
performance analysis, and portability across different 
computing platforms [16,17,18,19,20,21,22,23,24,25,26,27].  

The remainder of the report is organized as follows. 
Section II introduces the SYCL programming model, shows 
the major differences between an OpenCL program and a 
SYCL program, and gives a summary of the benchmark 
suite. In Section III, we describe our SYCL implementations 
in more details. Section IV evaluates the SYCL benchmarks 
on computing platforms with Intel central processing units 
(CPUs) and graphics processing units (GPUs). Section V 

concludes the report. 

II. BACKGROUND 

A. SYCL 

C++ AMP, CUDA, HIP, Thrust are representative single-
source C/C++ programming models for accelerators [28]. 
Such languages can be type-checked as everything sits in a 
single source file. They facilitate offline compilation so that 
the binary can be checked at compile time. A SYCL 
program, based on a single-source C++ model as shown in 
Figure 1, can be compiled for a host while kernel(s) are 
extracted from the source and compiled for a device. A 
SYCL device compiler parses a SYCL application and 
generates intermediate representations (IRs). A standard host 
compiler parses the same application to generate native host 
code. The SYCL runtime will load IRs at runtime, enabling 
other compilers to parse it into native device code. Hence, 
people can continue to use existing toolchains for a host 
platform and choose preferred device compilers for a target 
platform. 

The design of SYCL allows for the combination of the 
performance and portability features of OpenCL and the 
flexibility of using high-level C++ abstractions. Most of the 
abstraction features of C++, such as templates, classes, and 
operator overloading, are available for a kernel function in 
SYCL. A SYCL application is logically structured in three 
scopes: the kernel scope, the application scope, and the 
command-group scope. The kernel scope specifies a single-
kernel function that will be executed on a device after 
compilation. The command-group scope specifies a unit of 
work that will comprise of a kernel function and buffer 
accessors. The application scope specifies all other codes 
outside of a command-group scope. A SYCL kernel function 
may be defined by the body of a lambda function, by a 
function object or by the binary generated from an OpenCL 
kernel string. Although an OpenCL kernel is interoperable in 
the SYCL programming model, we use a lambda function 
for each kernel in a benchmark. 

 
 

Figure 1. SYCL is a single-source programming model 

TABLE I.  MAPPING FROM OPENCL TO SYCL 

Step OpenCL program SYCL program 

1 Platform query 

Device selector class 2 Device query of a platform 

3 Create context for devices 

4 Create command queue for context Queue class 

5 Create memory objects Buffer class 

6 Create program object 

Lambda expressions 
7 Build a program 

8 Create kernel(s) 

9 Set kernel arguments 

10 
Enqueue a kernel object for execution 

Submit a SYCL kernel 

to a queue 

11 Transfer data from device to host Implicit via accessors 

12 Event handling Event class 

13 Release resources Implicit via destructors 

 

 

https://github.com/zjin-lcf/HeCBench


 

Unified shared memory (USM) and buffers are two 
major ways to manage memory data in SYCL. USM is 
pointer-based, which is familiar to C/C++ programmers. The 
unified address space in USM encompasses hosts and one or 
more devices, reducing the barrier to porting existing C++ 
programs. Buffers, which are represented by the buffer 
template class, provides an abstract view of memory, but 
they are not directly accessed by a program and are instead 
used through accessor objects. For the Rodinia benchmarks 
in SYCL, the choice of memory management is SYCL 
buffers.  

Table I lists the steps of writing an OpenCL application 
and their corresponding steps in SYCL. The first three steps 
in OpenCL are reduced to the instantiation of a device 
selector class in SYCL. A selector searches a device of a 
user’s provided preference (e.g., GPU) at runtime. The 
SYCL queue class encapsulates a queue for scheduling 
kernels on a device. A kernel function in SYCL, which can 
be invoked as a lambda function, is grouped into a command 
group object, and then it is submitted to execution via 
command queue. Hence, steps 6 to 10 in OpenCL are 
mapped to the definition of a lambda expression and 
submission of its command group to a SYCL queue. Data 
transfers between a host and a device can be implicitly 
realized by accessor objects, and the event handling can be 
handled by SYCL event class. Releasing the allocated 
sources of queue, program, kernel, and memory objects in 
SYCL is handled by the SYCL runtime which implicitly 
calls destructors inside scopes. Compared to the number of 
OpenCL programming steps, the SYCL programming model 
cuts the number of programming steps by half with higher 
abstractions, reducing a developer’s burden of managing 
OpenCL device, program, kernel, and memory objects. 

B. Rodinia  

Rodinia is a widely used open-source benchmark suite 

for heterogeneous computing. Table II lists the name in 
alphabetical order of each benchmark, its application 
domain, the number of kernels in the benchmark, and the 
number of kernel arguments for each kernel. Among the 21 
benchmarks, the maximum number of kernels are 7 for the 
“hybridsort” benchmark, and the maximum number of kernel 
arguments are 34 for the “heartwall” benchmark. The large 
dataset, which are needed for some benchmarks, are not 
included in the GitHub repository. They can be downloaded 
at http://lava.cs.virginia.edu/Rodinia/download.htm. 

III. IMPLEMENTATIONS  

In consideration of the rapidly evolving SYCL 
programming model [29], we would like to summarize the 
SYCL features utilized in the benchmarks. 

A. Buffer Construction 

In SYCL, a host application uses instances of the SYCL 
buffer class to allocate memory in global, local, and 
constant address spaces. A SYCL buffer can handle both 
storage and ownership of data. In addition, a buffer is 
destroyed when it goes out of scope.  

Table III lists the ways a buffer can be constructed and 
its initial values after construction. The destruction behavior 
indicates if the SYCL runtime will block until all work in 
queues on the buffer have completed. For the benchmark 
suite, we use the first two methods for constructing buffers.  

B. Buffer Access Mode 

SYCL accessors allow a user to specify the types (e.g., 
global memory or constant memory) of data access, and the 
SYCL implementation ensures that the data is accessed 
appropriately. A device accessor, which is the default access 
type, allows a kernel to access data on a device. In contrast, a 
host accessor gives access to data on a host. A device 
accessor can only be constructed within command groups 
whereas a host accessor can be created outside command 
groups. Constructing a host accessor is blocking by waiting 
for all previous operations on the underlying buffer to 
complete. When accessing the contents of a device buffer 
before the buffer is destroyed in a host program, we could 
use a host accessor to access the contents managed by the 
device buffer. 

An accessor must be specified with an access mode 
shown in Table IV. Discarding write indicates that previous 
contents of a device buffer is not preserved, which implies 

TABLE II.  SUMMARY OF THE RODINIA BENCHMARKS 

Benchmark 

name 

Application 

domain 

Kernel 

counts 

Argument counts 

for each kernel  

b+tree Search 2 10, 11 

backprop Pattern recognition 2 6, 8 

bfs Graph algorithm 1 2 

cfd Fluid dynamics 5 3, 3, 4, 5, 10 

dwt2d Video compression 3 3, 5, 7 

gaussian Linear algebra 2  5, 5 

heartwall Medical imaging 1 34 

hotspot Physics simulation 1 13 

hotspot3D Physics simulation 1 14 

hybridsort Sorting algorithm 7 3, 3, 5, 5, 5, 5, 6 

kmeans Data mining 2 4, 8 

lavaMD Chemistry 1 6 

leukocyte Medical imaging 3 7, 10, 10 

lud Linear algebra 3 4, 5, 6 

myocyte Biological simulation 1 5 

nn Data mining 1 5 

nw Bioinformatics 2 12, 12 

particlefilter Medical imaging 4 2, 6, 8, 20 

pathfinder Grid traversal 1 12 

srad Image processing 6 2, 2, 3, 4, 14, 14 

streamcluster Data mining 2 3, 10 

 

 

TABLE III.  SUMMARY OF SYCL BUFFER MANAGEMENT 

Construction 

method 

Initial buffer content 

after construction 

Destruction 

behavior  

Buffer size Unspecified Non-blocking 

Associated host memory Contents of host memory Blocking 

Unique pointer to host data Contents of host data  Blocking 

Shared pointer to host data Contents of host data Blocking 

A pair of iterator values 
Data from the range 

defined by the iterator pair 

Non-blocking 

Container Contents of the container Blocking (1) 

(1) Please see the buffer synchronization rules in the SYCL specification for 

more details 



 

that it is not necessary to copy data from a host to a device 
before the buffer is accessed. It is important to specify the 
access mode correctly; otherwise, SYCL compilers will 
report an error when a kernel function tries to write to a read-
only buffer. On the other hand, a read-only accessor to a 
buffer disables data copy from a device to a host when the 
buffer is destroyed. 

C. Data Movement between Host and Device 

For the OpenCL implementations of the benchmark suite, 
data transfers between a host and a device are explicitly 
made with the OpenCL built-in functions 
“clEnqueueReadBuffer()” and “clEnqueueWriteBuffer()”. In 
the SYCL implementations, we rely on implicit and/or 
explicit data transfers. When a buffer is constructed with 
associated host memory as shown in Table III, the SYCL 
runtime will copy data from a host to a device before a 
kernel is launched, and optionally copy data back from a 
device to a host before the buffer is destroyed. Without 
explicit data copy specified in a SYCL program, a SYCL 
compiler may generate OpenCL built-in functions 
“clEnqueueMapBuffer()” and “clEnqueueUnmapMemObject()” 
for mapping data between a host and a device. On the other 
hand, data copy from a device to a host can be disabled 
explicitly using the method “set_final_data(nullptr)” of the 
SYCL buffer class.  

For explicit data transfers, we use the copy method of the 
command group handler. An explicit copy operation requires 
the specifications of a source and a destination. When an 
accessor is the source of the operation, the destination can be 
a host pointer or another accessor. When an accessor is the 
destination of the explicit copy operation, the source can be a 
host pointer or another accessor. 

D. Kernel Execution Order 

In OpenCL, a command queue is required to transfer data 
between a host and a device, and to ensure different kernels 
execute in the correct order. In contrast, SYCL provides an 
abstraction that only requires users to specify which data are 
needed to execute a kernel. By specifying access modes and 
types of memory for each kernel, a directed acyclic 
dependency graph for different kernels is constructed at 
runtime based on the relative order of command-groups 
submissions to a queue. The runtime will guarantee that 
kernels are executed in an order that guarantees correctness. 
By default, SYCL queues execute kernel functions in an out-
of-order fashion. An in-order queue, which is an extension to 
the default queue property [ 30 ], is not used in our 
implementations. 

E. Kernel Execution Model 

Conceptually, the SYCL kernel execution model is 
equivalent to the OpenCL kernel execution model. SYCL 
supports an N-dimensional (N ≤ 3) index space, and the 
space is represented via the “nd_range<N>” class. Each 
work-item in the space can be identified by the type 
“nd_item<N>”. The type encapsulates a global identifier 
(ID), a local ID, a work-group ID, synchronization 
operations, etc. 

A SYCL runtime creates a SYCL handler object to 
define and invoke a SYCL kernel function in a command 
group. A kernel can be invoked as a single task, a basic data-
parallel kernel, an OpenCL-style kernel, or a hierarchical 
parallel kernel. In our experiment, we invoke a variant of the 
“parallel_for” member function that enables low-level 
functionality of work-items and work-groups for a data-
parallel kernel. The variation allows us to specify both global 
and local ranges, perform the synchronization of work-items 
in each cooperating work-group, and create accessors to 
local memory. These functions are helpful for the smooth 
migration of an OpenCL kernel to a SYCL kernel.  

IV. EXPERIMENT 

A. Setup 

The benchmarks are compiled with the two commercial 
SYCL compilers, the Intel DPC++ compiler 2021.4.0 and 
the Community Edition of the Codeplay ComputeCpp 
compiler 2.7.0. Two computing servers are used for 
evaluating the benchmarks. The first server contains an Intel 
Xeon E-2176G CPU running at 3.7 GHz. The CPU has six 
cores, and each core supports two threads. The integrated 

TABLE IV.  SYCL BUFFER ACCESS MODES 

Access mode Description 

Read Read-only access to the content of a buffer 

Write Write-only access to the content of a buffer 

Read/Write Read and write access to a buffer 

Discard Write 
Write-only access to the content of a buffer. Discard any 

previous contents of the data the accessor refers to 

Discard 

Read/Write 

Read and write access to the content of a buffer. Discard 

any previous contents of the data the accessor refers to 

Atomic Atomic access to the content of a buffer 

 

- 

TABLE V.  PROBLEM SIZE FOR EACH BENCHMARK IN RODINIA  

Benchmark Problem size 

b+tree 1 million keys, 10000 bundled queries,  

a range search of 6000 bundled queries with 

the range of each search 3000 

backprop 65536 input nodes 

bfs 1 million vertices 

cfd 97K elements 

dwt2d 1024×1024 image, forward 5/3 transform 

gaussian 4096×4096 matrix 

heartwall 104 frames 

hotspot 512×512 data points 

hotspot3D 512×512 data points 

hybridsort 50000000 elements 

kmeans 494020 points, 34 features 

lavaMD 1000 boxes 

leukocyte 10 frames 

lud 8192×8192 data points 

myocyte 100 timesteps 

nn 5 nearest neighbors   

nw 16384×16384 data points 

particlefilter 400000 points 

pathfinder 100000×100 2D grid 

srad 512×512 data points 

streamcluster 65536 points 256 dimensions 

 

 



 

GPU (UHD Graphics 630) is Coffee Lake GT2, Generation 
9.5. The second server has an Intel Xeon E3-1585 v5 CPU 
running at 3.5 GHz. The CPU has four cores, and each core 
supports two threads. The integrated GPU (Iris Pro Graphics 
580) is Skylake GT4e, Generation 9.0. It contains 72 
execution units. 

For the GPU compute runtime, the device version is 
OpenCL 3.0 NEO on both platforms. The driver versions are 
21.33.20678 and 21.21.0 on the two platforms, respectively. 
For the CPU runtime, the device version is OpenCL 3.0, and 
the driver version is 2021.12.9.0.24_005321 on both 
platforms. The maximum work-group size is 256 and 8192 
on a GPU and a CPU, respectively. The operating systems 
are Ubuntu 20.04 and OpenSUSE 15.3, respectively. The 
compiler options are “-O3 -no-serial-memop -sycl-driver” 
for the ComputeCpp compiler, and “-O3” for the Intel 
DPC++ compiler. 

The problem sizes for the benchmarks are listed in Table 
V. For each benchmark, we use the same work-group size 
for the CPU and GPU unless different work-group sizes are 
specified in the benchmark. While adjusting the problem size 
and turning the work-group size may further improve the raw 
performance of SYCL kernels on a target platform, we are 
more concerned with developing SYCL programs to support 
the development of the SYCL compilers. 

B. Experimental Results 

We execute each benchmark four times and measure the 
device timing reported by the Intel OpenCL profiler [31]. 
The device timing is the total elapsed time of executing 
kernel(s) on a device specified by the SYCL’s device 
selector. The host timing, which is the total elapsed time of 
executing OpenCL runtime functions on a CPU host, is not 
considered for performance evaluation. We find that the host 
timing of a benchmark compiled with the ComputeCpp 
compiler does not necessarily include the device timing, 
whereas device timing is part of host timing for a benchmark 
compiled with the DPC++ compiler. The discrepancy of host 
timing between the two compilers is related to whether 
certain OpenCL runtime functions invoked on a host wait for 
the completion of kernel execution on a device. 

Tables VI and VII list the CPU and GPU device 
execution time in seconds of the benchmarks on the two 
computing platforms, respectively. “DPC++” and “CPC++” 
refer to the Intel DPC++ compiler and the Codeplay 
ComputeCpp compiler, respectively. The timing results of 
the “hybridsort” benchmark are not available (N/A) except 
the GPU timing of the benchmark compiled with DPC++. 

Figures 2 and 3 compare the CPU and GPU device 
timing for each benchmark using the two SYCL compilers. 

TABLE VI.  CPU and GPU device execution time on the Intel Xeon 

E-2176G and UHD Graphics 630, respectively 

Time 

(seconds) 

DPC++ 

GPU 

device 

CPC++ 

GPU 

device 

DPC++ 

CPU 

device 

CPC++ 

CPU 

device 

b+tree 0.0104 0.0077 0.006 0.012 

backprop 0.0045 0.004 0.002 0.003 

bfs 0.0733 0.04 0.0251 0.023 

cfd 3.0 4.0 4.1 11.2 

dwt2d 0.044 0.028 0.009 0.015 

gaussian 69.1 68.4 15.7 30.9 

heartwall 15.6 14.8 12.4 23 

hotspot 0.1 0.044 0.054 0.11 

hotspot3D 4.1 4.2 5.8 6.5 

hybridsort 1.24 N/A N/A N/A 

kmeans 120.5 115.8 78.9 177.2 

lavaMD 1.3 1.5 4.86 5.36 

leukocyte 4.86 5.6 3.9 21.7 

lud 10.7 11.36 5.5 13.8 

myocyte 0.56 1.47 0.27 0.26 

nn 0.15 0.248 0.676 0.83 

nw 0.71 0.84 0.58 0.97 

particlefilter 49.5 45.5 25.3 27.4 

pathfinder 3.36 2.94 28.9 21.4 

srad 2.1 1.2 1.1 2.2 

streamcluster 7.1 9.5 6.1 12.4 

 

TABLE VII.  CPU and GPU device execution time on the Intel Xeon 

E3-1585 v5 and Iris Pro Graphics 750, respectively 

Time 

(seconds) 

DPC++ 

GPU 

device 

CPC++ 

GPU 

device 

DPC++ 

CPU 

device 

CPC++ 

CPU 

device 

b+tree 0.0014 0.0029 0.009 0.017 

backprop 0.00089 0.001 0.0024 0.004 

bfs 0.0167 0.018 0.034 0.027 

cfd 2.02 1.98 5.1 17.7 

dwt2d 0.0069 0.006 0.011 0.019 

gaussian 63.6 53.6 20.5 52.3 

heartwall 3.48 3.46 18.8 36.3 

hotspot 0.015 0.016 0.058 0.175 

hotspot3D 1.98 1.93 6.18 10 

hybridsort 0.74 N/A N/A N/A 

kmeans 69.4 69.7 124.3 280.7 

lavaMD 0.44 0.53 7.87 8.75 

leukocyte 1.38 1.52 6.08 33.4 

lud 4.16 4.35 7.05 22.1 

myocyte 0.63 0.76 0.028 0.0282 

nn 0.093 0.1 0.31 0.465 

nw 0.49 0.6 0.54 1.11 

particlefilter 19.6 18.3 0.39 0.44 

pathfinder 1.2 1.07 40.1 34.6 

srad 0.412 0.395 1.06 3.1 

streamcluster 3.21 3.28 6.4 35.5 

 



 

When the ratio of device timing (CPU or GPU) for a 
benchmark is over 1, the device time of the benchmark 
compiled with CPC++ is longer than that of the benchmark 
compiled with DPC++. Excluding the “hybridsort” 
benchmark whose results are mostly not available, there are 
20 benchmarks in the suite. The averaged differences of the 
GPU device time of the benchmarks compiled with the two 
compilers are 5% and 8% on the two computing platforms, 
respectively. However, the CPU device time is on average 
1.84X and 2.28X longer using CPC++ on the two computing 
platforms, respectively. Hence, the performance gaps of the 
SYCL benchmarks executing on the CPUs are much more 
significant than those on the GPUs. 

We try to have a better understanding of the performance 
gaps on a CPU by profiling “leukocyte”, “kmeans”, 
“gaussian”, “cfd”, “lud”, “hotspot”, and “srad” with the Intel 
VTune Profiler 2021.8.0. The device time of each selected 
benchmark is at least 2X longer with CPC++ on the two 
platforms. The hotspots of the “leukocyte” benchmark are 
the spin time incurred by the implementation of the loop 
scheduler in the proprietary ComputeCpp library and the 
compute time of the math function “atanf” called in the 
“IMGVF” kernel. The single-precision floating-pointer 
operations in the kernel may be fully packed (512-bit) with 
DPC++. Similarly, the hotspots of the “kmeans” benchmark 
are the spin time and the minimum distance compute kernel 
which performs scalar single-precision floating-point 

operations with CPC++. Almost 100% of the single-
precision floating-point operations of the “fan2” kernel in the 
“gaussian” benchmark can be packed to 128- or 512-bit 
operations with DPC++, but less than 15% of the operations 
can be packed to 512 bits with CPC++. For the “cfd” and 
“lud” benchmark, the hotspots are the “compute_flux” kernel 
and the “internal” kernel, respectively. Both kernels can be 
better optimized with DPC++ to achieve higher single-
precision floating-point operations per second. For the 
“hotspot” and “srad” benchmarks, the spin time incurred by 
the implementation of the loop scheduler in the ComputeCpp 
library is significant in the device time on the CPU. The 
profiling results indicate that the major causes of the 
performance gaps on the CPUs are the percentage of packed 
(vectorized) floating-point operations that can be achieved 
by the compilers and the efficiency of scheduling a loop 
across threads at runtime. 

V. SUMMARY 

SYCL is becoming a promising programing model for 
heterogeneous computing. We apply the SYCL 
programming model to the widely used Rodinia benchmark 
suite, describe the transformations from the OpenCL 
implementations of the benchmarks to the SYCL 
implementations, and evaluate the benchmarks with the Intel 
DPC++ and Codeplay ComputeCpp compilers on 
microprocessors with a CPU and an integrated GPU. The 

 

Figure 2. The ratio of CPU (Intel Xeon E-2176G) and 

GPU (UHD Graphics 630) device timing for each 

benchmark compiled with the ComputeCpp and DPC++ 

compilers. When the ratio is over one for a benchmark, 

the device time is longer for the benchmark compiled 

with the ComputeCpp compiler.  

 

Figure 3. The ratio of CPU (Intel Xeon E3-1585 v5) and 

GPU (Iris Pro Graphics 750) device timing for each 

benchmark compiled with the ComputeCpp and DPC++ 

compilers. When the ratio is over one for a benchmark, 

the device time is longer for the benchmark compiled 

with the ComputeCpp compiler.  



 

publicly available implementations of the benchmark suite in 
SYCL are important for the development of the SYCL 
compilers and the performance and portability studies for 
heterogeneous computing systems. 
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